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Abstract- The main method of localization by dead reckoning 

used in indoor mobile robotics is odometry. This technique is 

prone to drift and errors accumulate during iteration. If we 

consider, in addition, wheel slipping on the ground, 

approximation on tyre pressures and the uneven ground, we can 

feel the shortcomings of this method. In this paper, a real-time 

controller for a wheeled mobile robot moving in an incompletely 

known environment is presented. The system uses odometry to 

estimate continually the vehicle position, which is correcting by a 

data fusion through an extended Kalman filter, using an 

embarked CCD camera. Two sliding mode controllers of the 

actuators linked with the two rear wheels are inserted in an inner 

control loop. A robust control of the robot is achieved using this 

strategy. The navigation control of the robot is made in order 

that the robot follows a pre-defined trajectory, taken as a 

reference in an outer control loop, which is only achieved if an 

accurate absolute localization is made. Simulation works show 

that the proposed method gives good results. 

Keywords- Mobile robot, data fusion, trajectory tracking, 

extended Kalman filter, real-time control. 

I. INTRODUCTION 

This paper proposes a method for position estimation of a 
mobile robot evolving in a partially known environment. Our 
approach requires the installation of beacons [1] in the 
evolution environment of the robot to determine its position 
correctly. The suggested system uses odometry [2] to estimate 
the vehicle position continuously and corrects the latter at 
regular intervals by identifying some beacons installed in the 
work environment using a CCD camera [3], [4]. The camera 
turns around an axis attached to the robot and measures the 
azimuth angles of these beacons whose position is known in 
the evolution environment of the mobile robot (figure 2). 
Consequently it is the aim of our present paper to show the 
importance of a precise localization [5]. An extended Kalman 
filter, answering to the non-linearity of the state and 
measurements equations of our system, is applied to estimate 
the optimal values of the position and the orientation by a data 
fusion approach [6]. A mobile robot must be able to locate 

itself but also to work out strategies of motion in order to 
minimize traveling time, consumed energy, etc... . Moreover 
during the execution of a task, the robot is brought either to 
continue a pre-defined trajectory [7], [8] in an absolute 
reference system, or to avoid obstacles detected on its way, or 
to follow a path [9], etc… Various sensors collect the 
localization data and the proposed controller synthesizes 
adequate control signals in real time, which drive the actuators 
(servo-motors). The used adaptive control in inner control 
loops, in conjunction of an effective LQR controller which 
allows, with the incorporation of the extended Kalman filter in 
an outer control loop, the correct motion of the mobile robot 
are presented in this work.  Simulation works concerning the 
mobile robot localization and trajectory tracking are presented. 
Finally some results of the real-time simulation of the 
navigation with the presence of different disturbances are 
reviewed. 

II. PRESENTATION OF THE REAL SYSTEM AND 

MEASUREMENTS EQUATIONS 

By using the laws of traditional mechanics, one can clarify 
a mobile robot evolution by a state equation (1). The data from 
CCD sensor give information on this state and constitute the 
observation equation (2). 

 ))(),(()( tutxFtx =�  (1) 

 ))(),(()( tutxGt =λ  (2) 

In this expressions t is time, x(t) ∈ ℜn
 is the state vector, 

λ(t) ∈ ℜm
 is the measurements vector and u(t) is the entry. 

The simplest kinematic model corresponding to a robot 
moving on a ground flat and driven via indeformable wheels is 
given by 
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In this expression v is the translation speed of the 

characteristic point C and ω is the rotational speed. U= [v  ω]
T
 

is the entry of the kinematic model (3) and X=[x y ψ]
T
 

represents the state. 

 

 

 

 

 

Figure 1.  Vehicle configuration. 

The point C represents the robot gravity center and the 
medium point of the wheels axis. R is the wheels ray and E 
indicates the vehicle way. The angle ψ represents the vehicle 
orientation. The model presented above is based on very 
reducing simplifying assumptions (rigid wheels, no slip..), in 
general, one takes account of this approximate aspect of the 
model through a state noise V which one adds to the state 
equation (1). Like the treatment and inspecting devices are 
numerical, the evolution equation, for example the equation 
(3) is generally presented in discrete time as in (5) where X (n) 
= X (tn) and Vn is the state noise disturbing the system 
evolution between the moments tn and tn+1. 
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If one places oneself at one particular moment noted tn all 

measurements are not available; thus the dimension of the 

vector observation (6) depends on time. 

 ( )nnnn UXG  ,    =λ  (5)
                                             

One takes into account the inaccuracy related to the 
process of measurement through an additive noise Wn, called 
measurement noise (7). 

 ( ) nnnnn WUXG    ,    +=λ  (6)
 

The localization problem arises in these terms: at the 
moment tn we seek an estimate of the robot state starting from 
the knowledge of the entries (U0, U1,…, Un-1) applied to the 

robot and of measurements (λ0, λ1,…, λn-1) available until the 
moment tn as an environment model if one uses external 
measurements. Let us note that the entries can be obtained 
from the control system or from odometers. The state noise Vn 
then takes account of the entry precision. 

The observations are the angles of azimuth λi of the 

beacons bi whose coordinates are (xi, yi). The equation of 

observation or measurement makes it possible to connect the 

current configuration of the robot to the observation sensor. 

The latter is formulated in the form of angles between the 

beacons directions and the robot symmetry axis such as: 

 ( ) ( )xgxxyyatg iiii         /      =−−−= ψλ  (7) 

λi are the angles which the beacons with the symmetry axis of 

the mobile robot form and i indicates the beacons number in 

the environment. 

One recognizes by this formulation the no linearity of the 
state model like that of the measurements model, which leads 
us to use the extended Kalman filter. The system solution 
consists in linearizing the equations of the state model as well 
as measurement model around the estimated vector by using 
Jacobien of the state and measurement models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Azimuth angles representation. 

III. ESTIMATE OF THE REAL POSITION 

By reference on figure 1, one notes the robot position and 
orientation at the stage k by the state vector X(k)=[x(k) y(k) 
ψ(k)]

T
 including a Cartesian position and an orientation laid 

down compared to a total reference mark. With initialization 
the robot starts of a known position and has a priori a plan of 
situation of the beacons bi. Each beacon is supposed to be 
precisely known. With each stop, observations λj(k) of these 
beacons are taken. Our goal in this cyclic process is to 
associate measurements λj(k) with the correct beacon bi to 
calculate a new estimate of the vehicle position. 

The extended Kalman filter [10] uses the two preceding 
models: the state model and the measurements model. The 
state model describes how the robot position X(k) changes 
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with the response time to an entry of control u(k). It is 
supposed to be disturbed by a centered Gaussian white 
vibration v, characterized by its covariance matrix Q(k), then 
the state equation is written: 

 ( ) ( ) ( )( ) ( )kvkukXFkX      ,    1 +=+  (8)
 

With v(k)∼ N (0, Q(k)) and F(X(k), u(k)) is a non-linear 
transition function from state. 

The measurements model expresses the sensors 
observations, according to the vehicle position and the 
azimuth angles of the detected beacons, with the following 
form: 

 ( ) ( )( ) ( )kwkXbgk i     ,      i +=λ   (9)
 

With w(k) ∼ N (0, Rj(k)) 

The observations function gi(bi, X(k)) express a 
measurement observed λ(k) like a function of the vehicle 
position X(k) and of the beacon position. This observation is 
disturbed by a Gaussian and centered white vibration w, 
characterized by its covariance matrix R(k). 

In the case of our application where the equations of state 
and observation are nonlinear, one uses an approximation 
which consists in considering these equations linearized 
around the current estimate to be able to apply the Kalman 
filter equations like a linear system. One speaks then about 
extended Kalman filter. The simplest formulation of the filter 
supposes that the noises are centered, white, decorreled 
between them and of the initial state and known covariance.  

The goal of this algorithm or this cyclic calculation is to 

produce an estimate of the robot position )1/1(ˆ ++ kkx at the 

stage k+1 based on the position estimate )/(ˆ kkx  at the stage k, 

on the control entry U (k) and on the new beacon observation 

λ(k + 1). The algorithm employs the following stages: 

prediction, observation, put in correspondence and estimate 

using the following equations: 

 )1(   )1()/1(ˆ)1/1(ˆ +⋅+++=++ kvkWkkxkkx  (10)
 

 ( ) ( ) ( ) ( ) ( )1 . 1  . 1   /1   1/1 +++−+=++ kWkSkWkkPkkP T  (11) 
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The equations (10), (11) and (12) represent respectively the 
new estimated position of the vehicle, the covariance matrix of 
the state estimation error at the moment k+1 and the Kalman 
gain vector. 

S(k+1) is the result of the stacking of the validated 
observations Gi. This validation is obtained by an adequate 
procedure of mapping starting from a certain threshold e. 
These validated measurements must check the inequality: 

 ( ) ( ) ( ) 21   1  1 1 ekVkSkV
t

ii ≤+⋅+⋅+ −  (13)
 

Measurements not checking this inequality are simply ignored 
during the process of localization (they are not used for the 
phase of estimate). 

The term Vi(k+1) called innovation is defined like the 
difference between the real observation and the predicted 
observation. 

 ( ) ( ) ( )kkGkV ii î  1  1 λ−+=+  (14)
 

IV. CONTROLLER STRUCTURE  

The principle diagram and the structure of the designed real 

time controller for the mobile robot navigation under the 

software Matlab-Simulink is shown in figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Real time controller structure 

αr , αl are the duty cycles for each chopper which  controls the 

right and the left servo-motors linked with the rear robot 

wheels. Variable structure PI regulators (which gains kp and ki 

are computed by the sliding mode controllers) generate them.  

wr, wl : The actual velocities in radians per second of the 

wheels of the robot respectively right and left, and wrr, wrl are 

the reference rotational speeds of the wheels. 

Lrl, Lrr:  Relative localization of the two driving wheels 

(respectively left and right wheel). 

Lrc:  Are the co-ordinates of the center of inertia of the robot 

in real time and Cc: are the co-ordinates of the center of inertia 

of the system along a trajectory stored in memory.  

HLC: The high level controller which uses data fusion in the 

outer loop (by application of the extended Kalman filter) 

provided by the different captors and determinates the speeds 

references wrl, wrr. 

The inner loop of the controller includes the transfer function 

of the two servomotors. 

V. SIMULATION WORKS 

The basis of our simulation program is to study the 
localization (figures 4 and 5) and the behavior of the mobile 
robot such that it can follow a planified path, which is shown 
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in figure (6). Figure (7) represents wheels speed in the 
presence of a disturbance and figure (8) represents the duty 
cycles variation for the servomotors. 

The robot moves with a constant translational speed of 0.5 
m/s. The sampling period of the rotational speeds equals 1ms. 
Like any other recursive method, the Kalman filter needs an 

initial estimate  ( )tYX 000
ˆˆˆ ψ  with its covariance matrix P0/0   

The robot begins its movement starting from the initial 
position (x0, y0, θ0).  

For the quadratic linear regulator, we have set the following 

matrices Q1, R1 in order to have K as follows:  
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Figure 4.  a) Trajectories with and without correction – Example 1       

b)Comparison of localization errors for example 1 
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Figure 5.  a) Trajectories with and without correction – Example 2 

b)Comparison of localization errors for example 2 
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Figure 6.  a) Trajectory tracking  without control, b) Trajectory tracking 

using the proposed controller 
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Figure 7.  a) Left wheel speed in the presence of a disturbance, b) Right 

wheel speed in the presence of a disturbance 
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Figure 8.  Duty cycles variation respectively for the left and right servomotor  

VI. CONCLUSION 

This paper demonstrates how it is possible to locate a 
mobile robot and to correct its trajectory using a real time 
controller. A trajectory estimator using internal (encoders) and 
external (CCD camera) sensors is presented. We have 
presented the application of this system for updating the 
position and the heading of the robot with respect to known 
beacons in an indoor environment. Further beacons can also 
be added to improve the robustness and accuracy of the model. 
Kalman filtering techniques are particularly suited to fusing 
the data of redundant beacons and also the exclusion of 

spurious information. Our main interest has been the real time 
navigation of a mobile robot.  To achieve our goal a discreet 
model of the robot has been made and we have worked out a 
technique which localizes the robot by multi-sensorial data 
fusion, and which includes the real time control of the robot 
actuators. Thus the robot is indirectly controlled in an inner 
loop. Tests of simulation with various disturbances, such as 
when the load torque on each right or left wheel of the robot 
increases or decreases when evolving, have been successfully 
achieved. These simulation tests show that a satisfactory path 
following of a specified trajectory for the mobile robot motion 
even in the presence of the disturbances has been obtained. 
This simulation work has used various linear and circular 
reference paths to show the real efficiency of this control 
strategy. All simulation works undertaken show a convergence 
of the model suggested. According to the type of disturbances 
sullying the mobile robot evolution, one notice that the 
trajectory correction is done normally by using our control 
model. Figures 4, 5 and 6 represent some courses of the 
mobile robot, by taking account of the disturbances which can 
as well influence the robot state as the observations acquired 
by CCD sensor and which can intervene at any moments 
(figure 7). One notes each time that the robot is able to 
repositioned and to follow the reference trajectory with the 
help of acquisition of new observations and with their fusion 
through the controller. The performance and validity of the 
proposed method were evaluated through a series of 
simulation works under different random disturbances. 
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